

Colle du 08/10 - Sujet 1 Bijections et trigonométrie

Question de cours.

- 1. Enoncer le théorème de la bijection.
- 2. Démontrer la valeur de $\cos\left(\frac{\pi}{3}\right)$.

Exercice 1. Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \qquad f(x) = \frac{x}{1+|x|}.$$

- 1. Démontrer que f est dérivable sur \mathbb{R} et calculer sa dérivée.
- 2. Montrer que f définit une bijection de $\mathbb R$ dans un ensemble que l'on précisera.
- 3. Déterminer une expression de f^{-1} analogue à celle de f.
- 4. Calculer de deux façons différentes la dérivée de f^{-1} .

Exercice 2. Soit $(a, b, c) \in \mathbb{R}^3$ tel que $a + b + c = \pi$. Montrer que

$$1 + 4\sin\left(\frac{a}{2}\right)\sin\left(\frac{b}{2}\right)\sin\left(\frac{c}{2}\right) = \cos\left(a\right) + \cos\left(b\right) + \cos\left(c\right).$$

Colle de mathématiques PTSI

2024-2025

Colle du 08/10 - Sujet 2 Bijections et trigonométrie

Question de cours.

- 1. Donner les valeurs remarquables du cosinus et du sinus.
- 2. Montrer que la fonction cosinus est dérivable sur $\mathbb R$ à l'aide de limites usuelles.

Exercice 1. Déterminer l'ensemble des réels $x \in \mathbb{R}$ tels que $\sin\left(3x - \frac{\pi}{5}\right)\cos\left(x + \frac{4\pi}{5}\right) = \sin\left(x + \frac{4\pi}{5}\right)\cos\left(3x - \frac{\pi}{5}\right)$.

Exercice 2.

- 1. Montrer que la fonction tangente définit une bijection de $]-\frac{\pi}{2};\frac{\pi}{2}[$ dans un ensemble V que l'on déterminera. On note φ sa réciproque.
- 2. Déterminer le tableau de variation de φ et préciser $\varphi(0)$ et $\varphi(\sqrt{3})$.
- 3. Montrer que φ est dérivable sur V et déterminer sa dérivée.

Colle du 08/10 - Sujet 3 Bijections et trigonométrie

Question de cours.

- 1. Définir la négligeabilité entre deux fonctions.
- 2. Montrer que la fonction $f: x \mapsto \ln(x^2 1)$ définit une bijection de]1; $+\infty$ [dans \mathbb{R} et préciser sa fonction réciproque.

Exercice 1. Résoudre dans \mathbb{R}_+ l'équation $x^7 + x^4 = 2268$.

Exercice 2. Soit

$$g:$$
 $]-\pi;\pi[\to \mathbb{R}$
$$x\mapsto \frac{2\cos{(x)}-6\sin{(x)}+8}{1+\cos{(x)}}.$$

Démontrer que g admet un minimum sur $]-\pi;\pi[$ et le déterminer. On pourra passer par les formules de l'angle moitié.